Non-abelian convexity by symplectic cuts dg-ga/9603015

نویسندگان

  • Eugene Lerman
  • Chris Woodward
چکیده

In this paper we extend the results of Kirwan et alii on convexity properties of the moment map for Hamiltonian group actions, and on the connectedness of the fibers of the moment map, to the case of non-compact orbifolds. Our motivation is twofold. First, the category of orbifolds is important in symplectic geometry because, generically, the symplectic quotient of a symplectic manifold is an orbifold. Second, our proof is conceptually very simple since it reduces the non-abelian case to the abelian case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A . S . Dancer and A . F . Swann NON - ABELIAN CUT CONSTRUCTIONS AND HYPERKÄHLER MODIFICATIONS

We discuss a general framework for cutting constructions and reinterpret in this setting the work on non-Abelian symplectic cuts by Weitsman. We then introduce two analogous non-Abelian modification constructions for hyperkähler manifolds: one modifies the topology significantly, the other gives metric deformations. We highlight ways in which the geometry of moment maps for non-Abelian hyperkäh...

متن کامل

A Note on Higher Cohomology Groups of Kähler Quotients

Consider a holomorphic torus action on a possibly non-compact Kähler manifold. We show that the higher cohomology groups appearing in the geometric quantization of the symplectic quotient are isomorphic to the invariant parts of the corresponding cohomology groups of the original manifold. For non-Abelian group actions on compact Kähler manifolds, this result was proved recently by Teleman and ...

متن کامل

Equivariant Volumes of Non-compact Quotients and Instanton Counting

Motivated by Nekrasov’s instanton counting, we discuss a method for calculating equivariant volumes of non-compact quotients in symplectic and hyper-Kähler geometry by means of the Jeffrey-Kirwan residue-formula of non-abelian localization. In order to overcome the non-compactness, we use varying symplectic cuts to reduce the problem to a compact setting, and study what happens in the limit tha...

متن کامل

Hamiltonian Torus Actions on Symplectic Orbifolds and Toric Varieties

In the first part of the paper, we build a foundation for further work on Hamiltonian actions on symplectic orbifolds. Most importantly we prove the orbifold versions of the abelian connectedness and convexity theorems. In the second half, we prove that compact symplectic orbifolds with completely integrable torus actions are classified by convex simple rational polytopes with a positive intege...

متن کامل

A compact symmetric symplectic non-Kaehler manifold dg-ga/9601012

In this paper I construct, using off the shelf components, a compact symplectic manifold with a non-trivial Hamiltonian circle action that admits no Kaehler structure. The non-triviality of the action is guaranteed by the existence of an isolated fixed point. The motivation for this work comes from the program of classification of Hamiltonian group actions. The Audin-Ahara-Hattori-Karshon class...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008